
DAQ software

Philip Rodrigues

University of Oxford

December 11, 2019

1



Outline

I Software-based TPC self-trigger prototype at ProtoDUNE
I Moving beyond the TDR DAQ design: online induction-wire hit finding
I Future work

2



ProtoDUNE self-trigger

3



TPC-based self-trigger: why and how

I Why: Stepping stone to DUNE FD, which will need a self trigger
I How:

I Proof-of-concept; more concerned with data flow than physics
I Make the simplest thing that works; iterate if necessary
I Work in the existing ProtoDUNE DAQ, with incremental changes
I Downstream (lower data rates) shouldn’t impose requirements on upstream (higher data rates,

performance more important)

4



System overview

FELIX BRFELIX BR

x10

FELIX BR

APA 5 Trigger cand’te BR

Hit-finding FPGA Hit-sending BR

APA
Trigger cand’te BR

Module-level
trigger BR

Routing 
Master/DFO

FELIX BRFELIX BR

x10

FELIX BR

APA 6 Trigger cand’te BR

ptmp messages

ptmp messages

p
tm

p
m

essages

p
tm

p
m

essages

artd
aq

fragm
en

t

FELIX BR

APA 4: on-host Trigger cand’te BR

ptmp messages

I Implement code inside artdaq board readers:

I Advantages: integration with run control, log
file handling, saving of raw data and metadata

I Trigger primitives and candidates are sent
using (from Brett Viren:
https://github.com/brettviren/ptmp)
I Data structures
I Message passing
I Algorithms

I Not shown: SSPs don’t participate in
generating triggers, but will provide data in
response to a trigger request

5

https://github.com/brettviren/ptmp


Trigger primitive (hit) finding

0 250 500 750 1000 1250 1500 1750 2000
Time (tick)

200

100

0

100

200

300

400

AD
C 

(a
rb

itr
ar

y 
of

fs
et

)

Ch. 9580

Ch. 9300

Ch. 9702

Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)

I Simple hit finding running in CPUs on FELIX BR hosts
1. Decode WIB format, select collection channels
2. Find pedestal and pedestal variance
3. Apply finite impulse response noise filter
4. Sum charge above threshold
I Per APA (∼ 10 GB/s): 10 CPU cores at 60% each

6



Hit finding works!

I Hits found continuously; read out from buffer in response to trigger

7



Hit finding works!

I Hits found continuously; read out from buffer in response to trigger

8



Trigger candidate (cluster) finding and “module”-level trigger

Figure: Jon Sensenig

I Take 50µs windows, find groups of hits contiguous in channel (with up to 4-wire gap)
I Generate TC if channel range of largest group is 100 or more
I Stitch together TCs from individual APAs
I Make a sliding window of one drift time, look for consistent slope (∆(time)/∆(channel))

between TCs
I Trigger if stitched TCs result in 350 hits or more in each APA

9



It works!

9300

9400

9500

9600

9700

Of
fli

ne
 c

ha
nn

el
 n

um
be

r

Z view U view V view

0 250 500 750 1000 1250 1500 1750 2000
Time (tick)

4200

4300

4400

4500

4600

Of
fli

ne
 c

ha
nn

el
 n

um
be

r

0 250 500 750 1000 1250 1500 1750 2000
Time (tick)

0 250 500 750 1000 1250 1500 1750 2000
Time (tick)

Run 9619, event 6 (timestamp 0x1168a5f24e41158, 2019-09-09 15:41:35 UTC)

I Read out 1000 ticks before and after the trigger time

10



Sum of events

9300

9400

9500

9600

9700

Of
fli

ne
 c

ha
nn

el
 n

um
be

r
Z view U view V view

0 1000 2000
Time (tick)

4200

4300

4400

4500

4600

Of
fli

ne
 c

ha
nn

el
 n

um
be

r

0 1000 2000
Time (tick)

0 1000 2000
Time (tick)

I Sum waveforms in many events. (Idea from Jon Sensenig, U. Penn)
11



Induction-wire hits

12



Background

I TDR baseline design: hit-finding in collection wires only
I Higher signal-to-noise
I Unipolar signal easier to identify

I Possible advantages of adding induction hits-finding:
I Full 3D reconstruction: fiducial cut
I More information for PID (eg lowest energy solar/SN vs radioactive decays)
I Improvements in certain noise scenarios

13



A sample event with “disappearing” induction signal

Run 10331 Evt 10

4000 4200 4400 4600 4800 5000
Time (tick)

6650

6660

6670

6680

6690

6700

6710

6720
Of

fli
ne

 c
ha

nn
el

 n
um

be
r

100

75

50

25

0

25

50

75

100

AD
C

U view, coherent noise subtracted

200

100

0

100

200 Channel 6704

200

100

0

100

Channel 6703

4000 4200 4400 4600 4800 5000
200

100

0

100

200 Channel 6702

coherent noise subtracted

I Left: 2D ADCs, Right: a few channels in 1D
I The showery ∼horizontal track at channels 6685–6705 is very faint: that’s what we’re interested

in recovering
I (I’ve subtracted coherent noise similarly to how it’s done in the offline, just to remove one extra complication. At each time tick, calculate the median

value in each FEMB. Subtract that value. I suspect this can even be done efficiently online with a sorting network: see, eg
http://pages.ripco.net/~jgamble/nw.html)

14

http://pages.ripco.net/~jgamble/nw.html


FFT deconvolution à la offline

Run 10331 Evt 10

4000 4200 4400 4600 4800 5000
Time (tick)

6650

6660

6670

6680

6690

6700

6710

6720
Of

fli
ne

 c
ha

nn
el

 n
um

be
r

4000

2000

0

2000

4000

AD
C

U view, coherent noise subtracted, FFT deconvolved

2500

0

2500

5000

7500
Channel 6704

2000

0

2000

4000

6000
Channel 6703

4000 4200 4400 4600 4800 5000
2000

0

2000

4000

6000

8000 Channel 6702

coherent noise subtracted, FFT deconvolved

I The same after FFT-based deconvolution, similar to what’s done offline in ProtoDUNE. Full
details in backups

I I think this is probably not feasible to do online, but it gives an idea of what we’re trying to
achieve

15



Running sum signal processing 1
I Elegantly simple idea from Francesco Pietropaolo and Filippo Resnati: just keep a running sum

Si of induction channel values. Converts bipolar to unipolar, and looks like a deconvolution

Before running sum

200

100

0

100

200 Channel 6704

200

100

0

100

Channel 6703

4000 4200 4400 4600 4800 5000
200

100

0

100

200 Channel 6702

coherent noise subtracted

After running sum

1000

500

0

500

1000
Channel 6704

0

1000

2000

3000
Channel 6703

4000 4200 4400 4600 4800 5000
0

500

1000

1500

2000

2500 Channel 6702

coherent noise subtracted, running sum = 1

16



Running sum signal processing 1
I Elegantly simple idea from Francesco Pietropaolo and Filippo Resnati: just keep a running sum

Si of induction channel values. Converts bipolar to unipolar, and looks like a deconvolution

FFT deconvolution

2500

0

2500

5000

7500
Channel 6704

2000

0

2000

4000

6000
Channel 6703

4000 4200 4400 4600 4800 5000
2000

0

2000

4000

6000

8000 Channel 6702

coherent noise subtracted, FFT deconvolved

After running sum

1000

500

0

500

1000
Channel 6704

0

1000

2000

3000
Channel 6703

4000 4200 4400 4600 4800 5000
0

500

1000

1500

2000

2500 Channel 6702

coherent noise subtracted, running sum = 1

17



Extending hit-finding to induction wires

0

200

400

600

800

1000

1200

1400

1600

1800

4000 4020 4040 4060 4080 4100 4120 4140 4160 4180 4200
Time

6460

6480

6500

6520

6540

6560

6580

6600

6620

6640

6660

C
ha

nn
el

I Aran Borkum working on putting this into offline framework for efficiency studies

18



Future things

I Meeting high-uptime requirements: fault tolerance, alternative strategies for run control?
I Event building: any gain from distributed filesystems/object stores?
I Demonstrate this all at ProtoDUNE-II in 2022

19



Backup slides

20



ptmp data structures, message passing and algorithms

I TrigPrim: TPC hit with channel, start time, time span, ADC sum, peak ADC (unused so far),
error flags (unused so far)

I TPSet: a container for TrigPrims, with count, detector ID, creation time, time/channel span,
actual list of TrigPrims

I TPSets can be passed as ZeroMQ messages over network or in-process. Fast, configurable,
alternatives for handling backpressure (drop or wait)

I TPWindow algorithm repackages TrigPrims into fixed-time windows
I TPZipper algorithm aggregates multiple TPSet message streams in time order, with (soft)

maximum latency guarantee

21



SIMD

Credit: Decora at English Wikipedia. CC Attribution-Share Alike 3.0

I Act on multiple values simultaneously in one instruction
I Machines I can access have AVX2 with 256-bit registers, ie 16 16-bit numbers at a time
I Now our back-of-envelope looks better: 16Ncore clock cycles per sample
I Just got access to a system at CERN with AVX-512

22



Running sum signal processing 2

I Running sum output, zoomed out.
Large changes in pedestal

I Orange line is my “frugal
streaming” estimate of the
pedestal: can’t keep up

I There are probably ways to deal
with this, but I haven’t thought of
them yet

1000

500

0

500

1000
Channel 6704

w'form
ped

25%ile
75%ile

0

1000

2000

3000
Channel 6703

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500 Channel 6702

coherent noise subtracted, running sum = 1

23



Running sum signal processing 3

4000 4200 4400 4600 4800 5000
Time (tick)

6650

6660

6670

6680

6690

6700

6710

6720

Of
fli

ne
 c

ha
nn

el
 n

um
be

r

400

200

0

200

400

AD
C

U view, coherent noise subtracted, running sum = 0.99

500

0

500

1000

1500 Channel 6704

0

500

1000
Channel 6703

0 1000 2000 3000 4000 5000 6000
500

0

500

1000
Channel 6702

coherent noise subtracted, running sum = 0.99

I Francesco and Filippo point out that you can deweight the previous sum value to reduce the
pedestal variation, ie Si = αSi−1 + ADCi

I Shown above is α = 0.99. Horizontal track is rescued, pedestal under control
I Disadvantage for online implementation is need for floating-point (or fixed-point approximation)

24


